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Abstract-An instant-1~1 similarity method is proposed to analyze the unsteady state Graetz problems. 
Unsteady heat transfer for fully-developed laminar flow of power-Iaw non-Newtonian fluids in the thermal 
entrance region of pipes and plate slits, with viscous dissipation considered, is studied. For the unsteady 
thermal entrance heat transfer problems, only large Graetz numbers (small normalized axial distance) 
are concerned and the normalized time from transient up to steady state is of order IO- ’ : therefore, the 
instant-local similarity approach gives results of high accuracy. The effects of the flow index, viscous 
dissipation and Graetz number on the heat transfer rate are demonstrated with numerical solutions. The 
corresponding steady-state Graetz problems are studied by the local similarity method whose solutions 
agree very well with the extended Leveque solutions particularly for large Graetz number and Brinkman 

number. 

NOMENCLATURE 

Brinkman number ; 
specific heat; 

Graetz number, -Q&xx) in pipe case and 
=2HQ/(awx) in plate slit case; 
heat transfer coefficient; 
plate slit half-height; 
thermal conductivity ; 
parameter of a power-Iaw fluid ; 
l/n; 
flow index of a power-law fluid ; 
local Nusselt number, =2hR/k in pipe case 
and =ZhH/k in plate slit case; 
volumetric flow rate, = zR’(u) in pipe case 
or 2wH(u) in pipe slit case ; 
radial coordinate in pipe; 
pipe radius ; 
time ; 
temperature of the fluid; 
bulk temperature; 
inlet fluid temperature; 
inside surface temperature; 
velocity in axial coordinate; 
maximum velocity in the axial direction, 
=(u> (m+3)/(m+ 1) for pipe flow and 
=<u> (m+2)/(m+ 1) for plate slit flow; 
average velocity in the axial direction ; 
width of the plate slit; 
axial coordinate; 
normalized axial coordinate, =ax/(R2u,,,,,) 
in pipe case and =ax/(H%,,,) in plate slit 
case ; 
cross-slit coordinate; 
normalized radial coordinate, = r/R ; nor- 
malized cross slit coordinate, = y/H ; 
Heaviside unit operator, =0 for t<O and 
= 1 for t20. 

Greek symbols 
thermal diffusi~ty; 

ttrz 
-l/2. 

tramforked radial or cross-slit coordinate, 

=(I-- U/r; 
normalized temperature, 

= (T - T,)/(T, - T,); 
normalized time, =at/R’ for pipe flow and 
=atfH2 for plate slit flow; 
transformed axial coordinate, =(9X/2)1’3 ; 
density. 

1. INTRODUCI’ION 

THE CLASSICAL steady-state heat and mass transfer in 
the entrance region of channels with fully-develo~d 
laminar flow is well known as the Graetz problem. The 
eigenfunction expansion method is used extensively 
for the study of this problem. Recently, it is shown that 
the extended Leveque method [l-6] is useful for large 
Graetz number which corresponds to small normal- 
ized axial distance. Therefore, the extended Leveque 
solutions are the supplemental solutions of the eigen- 
function solutions which require less eigenfunctions 
for small Graetz number. 

The unsteady Graetz problems were analyzed by 
Sparrow and Siegel [7, 81 using the methods of 
characteristics and finite difference. Siegel [9] treated 
the same problem in the downstream region using 
eigenfunction expansion method. Only Newtonian 
fluids without viscous dissipation are considered in the 
previous analyses. However, in the design of the 
control systems of heat transfer devices in organic- 
cooled nuclear reactors, non-Newtonian ffuids are 
concerned with and viscous dissipation is significant. 

In this paper, the unsteady state Graetz problems for 
the heat transfer in the thermal entrance region for 
fully-developed laminar flow of power-law non- 
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Newtonian fluids in pipes and plate slits with step 
change in surface temperature are studied by a new 
method called instant-local similarity method pro- 
posed by the authors. The new method uses the concept 
of the extended Leveque method by restricting the 
solutions to large Graetz number and converting the 
energy equations to boundary layer type. The com- 
parison of the local similarity solution with the 
extended Leveque solution for the steady Graetz 
problems in pipes is given first. 

2. GOVERNING EQUATIONS 

The unsteady-state energy equation in the thermal 
entrance region for fully-developed laminar flow in a 
pipe of power-law fluids with constant physical 
properties is described by the following equation 

where 

u=u,,,[l gg+y, ,+ (2) 

The last term of equation (1) denotes viscous dissi- 
pation, and n is the flow index of the power-law non- 
Newtonian fluids. Conduction and dispersion in the 
axial direction have been neglected. The initial and 
boundary conditions are 

T(x. r. 0) = To (3) 

T(0, r. t) = To (4) 

$X. 0, tf = 0 (5) 

7-(x. R, t) = T,+(T,- T,) l(t) (6) 

where l(t) is the Heaviside unit operator, 

l(t) = 
i 

1,720 

o,t<o. (7) 

Equations (3) and (4) show that the initial temperature 
of the fluid in the pipe and the entrance fluid tempera- 
ture are both at a constant temperature ‘Fe. Equation 
(6) denotes that the pipe wall has a constant wall 
temperature T, for time I 2 0. 

Defining the following dimensionless variables and 
groups 

y=f 

at 
7 = -- 

R2 

T-T 
@=-” 

To-T, 

Br = (m+l~+’ 

equations (l)-(6) become 

ao 
x+(1-Y -+I): = ;;cYg! + &Y”+r 

/ / 

(12) 

0(X, 1, 7) = 0. (13) 

Equations (9)-(13) form a linear partial differential 
equation system whose exact solution is very difficult 
to obtain. Therefore, we are trying to find the approx- 
imate solutions for various limiting cases. One of the 
limiting cases is the steady state solution for large 
Graetz number. Leveque solution [ 101 which assumes 
a linear velocity profile with respect to normal distance 
from the pipe wall is well known. The Leveque solution 
has been extended by a number of authors [l-6]. 
Basically, in the extended Leveque method the energy 
equation system is converted to a boundary-layer type 
by replacing the boundary condition at the center of 
the pipe with the boundary condition outside the 
thermal boundary layer. Therefore, local similarity 
method for the boundary layer heat transfer [l l-141 
can be applied to obtain a solution for large Graetz 
number. It is expected that the extended Leveque 
solution agrees with the local similarity solution. For 
the unsteady-state problem, an instant-local similarity 
method is proposed to find the approximate solution 
for small normalized time and large Graetz number. 
First, a coordinate transformation is used to change 
the independent variables (X, Y, T) of 0 into (5, Y), 7). 
That is 

(14) 

where c is the transformed axial distance and 1 is the 
transformed normal distance from the wall. Applying 
equations (14), equations (9), (10) and (13) become, 
respectively 

(15) 

(16) 
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FIG. 1. Comparison of steady-state heat transfer for pipe flow, n = 1. 

o(<, 0, 7) = 0. (17) 

Since we are trying to find approximate solutions in 
the thermal entrance region for large Graetz number, 
the heat transfer problem becomes boundary-layer 
type. Instead of using the boundary condition at the 
center of the pipe, equation (12), the boundary con- 
dition at the inlet of the pipe, equation (1 l), is used for 
the boundary condition outside the thermal bo~dary 
layer. That is 

O({, co, T) = 1. (18) 

3. STEADY-STATE CASE 

For the steady-state case, equations (IS), (17) and 
(18) become 

(19) 

O(& 0) = 0 (20) 

of{, Co) = 1. (21) 
This is a bound~y-layer heat transfer problem. The 
local similarity method [ll-141 can be applied to 
obtain the approximate solution. The method is the 
deleting of the term containing ~?@/a{ on the right- 
hand side of equation (19) and considering 5 as a 
prescribed parameter. Notice that when t is small, the 
term on the right-hand side of (19) is also small and can 
be omitted. The simplified equation from (19) is an 
ordinary differential equation which forms a two-point 
boundary-value problem with equations (20) and (21) 
as boundary conditions. Numerical solutions are 
obtained by a fixed step-size fourth-order Runge- 
Kutta-Gill integration scheme along with a 
conventional shooting method [lS]. A description of 
the numerical method was given in [M]. 

The heat transfer coefficient h is defined as 

h(T,-T,) = kg- 
ur lr=R 

where T, is the bulk temperature. Since the local 
similarity solution is only applied to small axial 
distance, Tb can be represented by the inlet tempera- 
ture T,. Hence the local Nusselt number, Nu, becomes 

Nu 1= y  = 25-l E 
aq 11=o’ 

The Graetz number, Gz, is defined as 

(23) 

& = .g 

ax 
(24) 

where Q is the volumetric flow rate. Thus 

Therefore, normalized axial distance is inverse pro- 
portional to the l/3 power of the Graetz number. 

Figure 1 shows the comparison of the local simi- 
larity solution with the extended Leveque solution [3, 
S]. The agreement between these solutions is very good 
particularly for large Graetz numbers. The matching is 
excellent for large B~nkman number which cor- 
responds to significant viscous dissipation. It is thus 
concluded that both the local similarity solution and 
the extended Leveque solution are valid for large 
Graetz number. Typical temperature profiles near the 
thermal inlet of a pine are shown in Fig. 2 for n = 1 and 
Br = 0. As expected, the thickness of thermal boun- 
dary layer increases with a decrease of the Graetz 
number. In the next section, the idea of local similarity 
is extended to unsteady-state heat transfer. 

4. THE INSTANT-LOCAL SlMlLARITY METHOD 

Deleting the term on the right-hand side of equation 
(15) we have the local similarity approximation of the 
unsteady-state heat transfer for small normalized 



1534 HSIAO-TSUNG LIN and YEN-PING SHIH 

Fw 2. Typical temperature profiles near the thermal entrance of a pipe, n = 1, Br = 0. 

axial distance. In order to find the unsteady heat 
transfer solution, a further coordinate transforms 
from (t, q, r) to (4, cl z) is made by defming 

i = (R - r)/(rxr)‘~2 = ?,@- 1. ‘2. (26) 

Hence, equation (15), with the term on the right-hand 
side deleted by the local similarity approximation, 
becomes 

(27) 

The transformed boundary conditions are 

O(& 0, f) = 0 (28) 

O(& “3, z) = 1. 129) 

For small 7 and (or) small i?O/d7, the term z(SV37) on 

the right-hand side of equation (27) can be omitted, in 
a similar manner like the local similarity method, to 
simplify the partial differential equation into an 
ordinary differential equation. This is called the instant 
similarity method proposed by the authors. The 
successive use of the local similarity method and the 
instant similarity method is thus called the instant- 
local similarity method. Numerical solution is ob- 
tained by considering g and 7 as prescribed parameters 
in the numerical integration of the simplified equation 

FIG. 3. Effect of~raetznum~r on transient heat transfer of pipe, n = 1, Br = 0. - - - designates steady-state 
value. 



Unsteady thermal entrance heat transfer of power-law fluids in pipes and plate slits 

Nu c 
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FIG. 4. Effect of Brinkman number on transient heat transfer of pipe, n = 1, Gz = 1000. - - - designates 
steady-state value. 

system by the numerical method mentioned above. 
Expressing the heat transfer rate in terms of local 

Nusselt number 

Nu = 7 = 2r-“‘$([, 0, T). (30) 

The effects of Graetz number, Brinkman number and 
flow index on the local Nusselt number are shown in 
Figs. 3-5, respectively. It is illustrated that the 
unsteady-state solutions approach to the correspond- 
ing steady-state values asymptotically. The steady- 
state values are obtained from extended Leveque 
solutions in [4,5]. Development of temperature profile 
following a step change in surface temperature of pipe 
is shown in Fig. 6. The profile approaches to the steady 
state layer in a small normalized time. 

1535 

5. PLATE SLIT CASE 

The fully-developed steady flow of power-law non- 
Newtonian fluids in a plate slit between two parallel 
plates separate of height 2H is described by the velocity 
profile 

(31) 

where u is the velocity in the axial coordinate x, and y is 
the normal coordinate from the center of the plate slit. 
The unsteady-state heat transfer equation of power- 
law fluids with constant physical properties and 
neglecting the heat conduction in the axial coordinate 
is 

(32) 

Nu 

n = 0.5 

: 
--- 

FIG. 5. Effect offlow index on transient heat transfer of pipe, Br = 0, Gz = mm---designates steady-state 
value. 
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FIG. 6. Development of temperature profile of pipe, n = 0.5, Br = 0, Gz = 1000. 

where the last term of (32) represents the viscous 
dissipation, The initial and boundary conditions are 
assumed as 

T(x, y, 0) = T, (33) 

T(0, y, t) = T, (34) 

g(x, 0, t) = 0 (35) 

T(x, H, t) = T,+(T,- T,) l(t). (36) 

Introducing the dimensionless groups and variables 

YE; 

T-T, 
Q=- 

To-T, 

Br = (m+ l)“+’ 

(37) 

we have 

ao 
d7 + (I_ y”“g = f$ + Bry”+l (38) 

(41) 

0(X, 1, T) = 0. (42) 

To facilitate the analysis by boundary layer ap- 
proach, the coordinate transformation of (14) is used. 
Equation (38) becomes 

a20 3 
v + 2s-1[l-(l-cs)~+1]~~ 

+ Brc2( 1 - {r))“” - 5’ g 

(43) 

with boundary conditions given by equations 
(16)-(18). 

The local similarity solution for the steady-state 
heat transfer is obtained by omitting the term on the 
right-hand side of (43) and the term containing the 
partial derivative with respect to time, a@/&. For a 
wide range of the Graetz number, lOC-10000, the 
matching of the local similarity solution and the 
extended Leveque solution is found to be excellent as 
shown in Fig. 7. 

Using the coordinate transformation of (26), equa- 
tion (43) becomes 

a% 3 
ai + 

i 
Z5-‘[1-(l-r~;=i)m+~]r5 +;; 

1 
g 

+ grr(l_+Q<)m+r = rg (44) 

where the term on the right-hand side of (43) has been 
omitted. The instant-loca! similarity solution is ob- 
tained from equation (44) and the boundary con- 
ditions of equations (28) and (29) by deleting the term 
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FIG. 7. Comparison of steady-state heat transfer for plate slit flow, n = 1, Br = 0. 

~(a~/a~) on the right-hand side of (44) and considering 
T and r as prescribed parameters in the numerical 
integration of the resultant two-point boundary-value 
problem. 

Defining the heat transfer coefficient h as 

dT 
W-S--T,) = k;iy,-_ 

the local Nusselt number 

(4% 

is then expressed by (23) and (30), respectively, for 
steady-state and unsteady-state cases. In plate slit case, 
the Graetz number 

(&2!Q 
WQX 

(47) 

where Q is the volumetric flow rate, is related to the 

transforms axial distance r by 

Gz = 18 

The comparison of the local similarity solution with 
the extended Leveque solution [4,5] is shown in Fig. 7. 
The agreement is excellent. Figure 8 shows the effect of 
flow index on the local Nusselt number. Like the case 
of pipe flow, the heat transfer rates for large values of 
normalized time and for steady-state increase as the 
flow index n decreases. 

6. coNcLusIoN 

For small normalized distance it is known that the 
Craetz problem of the entrance heat transfer in pipes 
can be converted into boundary layer problem. In this 
paper, the local similarity method is applied to the 
analysis of the steady-state Graetz problems for the 
heat transfer in the entrance region for fully-develo~d 

20 

5 

Nu 

2 

FIG. 8. Effect of flow index on transient heat transfer of plate slit, Br = 0, Gz = 1000. - ---designates steady- 
state flow. 
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laminar flow of power-law non-Newtonian fluids in 
pipes and plate slits. Heat generation from viscous 
dissipation is taken into account and is represented by 
the Brinkman number. For the analysis of the un- 
steady-state Graetz problems, a novel method namely 
instant-local similarity method is used. The steady- 
state results agree with the extended Leveque solutions 
very well, while the unsteady-state heat transfer rates 
approach the steady-state values asymptotically. Since 
the normalized time from the transient up to steady 
state is only of order lo-‘, the instant-local similarity 
method gives results of high accuracy and is very useful 
for the study of the unsteady Graetz problems. 
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TRANSFERT THERMIQUE VARIABLE A L’ENTREE DE CONDUITES ET DE FENTES 
PLANES POUR DES FLUIDES A LOI PUISSANCE 

Resrirru-On propose une methode de similarite instantanee et locale pour analyser les problemes de Graetz 
variables. On etudie le transfert thermique variable pour un ecoulement laminaire de fluides non-newtoniens 
a loi puissance dans la region dent& thermiques des conduites et des fentes planes, en considerant la 
dissipation visqueuse. Seuls sont consider& les grands nombres de Graetz (faible distance axiale norm&.) et le 
temps normtjusqu’a la solution permanente est de I’ordre de lo- ’ ; I’approche par la similarite instantanee et 
locale donne des rksultats trb p&is. Les effets de l’indice de koulement de la dissipation visqueuse et du 
nombre de Graetz sur le flux de chaleur sont illustres par des solutions numeriques. Les problemes 
permanents correspondants sont etudiis par la mtthode de similaritt locale dont les solutions s’accordent 
trts bien avec les solutions completes de Ltveque, particulierement pour des grands nombres de Graetz et de 

Brinkman. 

INSTATIONARER WARMEUBERGANG IM EINLAUFGEBIET VON ROHREN 
UND PLATTENSPALTEN BEI NICHT-NEWTON’SCHEN FLUIDEN 

Zusammenfassung-Es wird eine zeitlich-lokale Ahnlichkeitsmethode verwendet, urn das instationare 
Graetz-Problem zu untersuchen. Behandelt wird der instationlre Wkmetibergang bei voll ausgebildeter 
laminarer Stromung von viskosen nicht-newton’schen Fluiden im thermischen Einlaufgebeit von Rohren 
und ebenen Spalten unter Berucksichtigung der viskosen Dissipation. Bei Untersuchungen des 
instationken thermischen Einlaufs werden nur grol3e Graetz-Zahlen (kleiner normierter axialer Abstand) 
betrachtet, wobei die normierte Zeit vom ubergangsbereich bis zum stationaren Zustand die GroBenord- 
nung von 10-i hat. Fur diesen Bereich liefert die zeitlich-lokale Ahnlichkeitstheorie Ergebnisse von guter 
Genauigkeit. Die Einfliisse von Stromungsindex, viskoser Dissipation und Graetz-Zahl auf den Warme- 
iibergang werdm anhand numerischer Losungen gezeigt. Die entsprechenden stationlren Graetz- 
Probleme werden ebenfalls mit der zeitlich-lokalen Ahnlichkeitsmethode behandelt, wobei die Ergebnisse 
sehr gut mit den erweiterten Leveque-Losungen, besonders fur grol3e Graetz- und Brinkman-Zahlen, 

ubereinstimmen. 
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PAWET HECTAUMOHAPHOTO TEWIOOGMEHA HA TEWIOBOM YLtACTKE 
B TPY6AX H FUIOCKMX ~EJIJIX fiJIR CTEllEHHbIX 2NiflKOCTEfl 

Annoraunn- npWJIOmeH MCTOflnOKanbHOii aBTOMOnenbHOCTH LlJlll pelUeHHK HeCTauwOHapHbIX 3anaY 

I-peTua. MccnenyeTcK HeCTaUEiOHapHbIii TennonepeHoc npe nOnHOCTbKI pa3BHTOM nahtmiapHor4 
TeqeHHH CTeIIeHHbIX HeHbIOTOHOBCKWX WlAKOCTeii Ha HarpeBaeMOM Ha'danbHOM yYaCTKe Tp,'6 W 

nnocKHx ueneR c yqeTob4 BK3~oji nmmtnaumi. Pemetise HecTaueoHapHbIx 3anaq TennonepeHoca 
paCCMaTpHBaeTCFi TOnbKO 8VIR 6onbmex 3HaWHH8 qWCna rpCTUa (He6Onbwix HOpMWpOBaHHblX 

paCCTOKHBiOT BXOna)H HOpMHpOBaHHbIX L,pOMexyTKOB BpeMeHB OT nepeXO,YIHOrO a0 CTau&,OHapHOrO 

COCTOKHHR nOpRLlKa lom'. npH TaKWX yCnOBHKX MeTOn nOKanbHOi? aBTOMOnenbHOCTH LlaeT OYeHb 

TOqHbIC pt?-JynbTaTbl. Ha IIpHMCpe YEICneHHbIX peUIeHli$i nOKa3aHOBnHIIHWe BHL,eKCa HeHbtOTOHOBOCTH. 

BRJKOfi LlNCCWnaUWA W 'IRCna rpeTUa Ha WHTeHCHBHOCTb TennOO6MCHa. MeTOnoM nOKanbHOfi aBTO- 

MOLlenbHOCTW HCCJleRyIOTCSI COOTBeTCTByWUAe CTWHOHapHbIe JaL,aW rpeTUa. Pe3ynbTaTbI pe,IJeHH,, 

XOpOIUO COrAaCymTCK c 0606LUeHHbIMH peuIeHsaMB JeBeKa B OCO6eHHOCTH npw He6OnbUIax wicnax 

rpeTUa W 6pAHKMaHa. 


